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CHAPTER I

INTRODUCTION

For accurate radar cross section (RCS) measurements, one should illuminate

the target with a plane wave. One way to achieve a plane wave is to use a compact

antenna range [1]. In a compact range, a paraboloid is normally used as the main

reflector with a point source at the focus. The paraboloid converts the spherical

wavefront of the point source to a planar wavefront. However, because a finite

size paraboloid is used in a compact range, there are diffracted fields from the rim

of the paraboloid. These diffracted fields disrupt the planar wavefront and cause

erroneous measurements. In order to reduce the diffracted fields, various edge

termination methods have been investigated. These methods include: the use of

absorber material [2], serrated edges [2], shaped reflectors [3], simple rolled edge [4],

and blended rolled edges [5,6]. Among these methods, rolled edge terminations

seem to provide the best performance. For a rolled edge termination, an elliptical

or some similar surface is added to the paraboloid along its rim such that the

surface is smooth and continuous. Thus the diffracted field level from the rim of the

paraboloid (junction contour) is reduced. Also, since the specular reflection from

the rolled edge is away from the target area, the planar wavefront is maintained.

Recently, the concept of blended rolled edges has been introduced. In a blended

rolled edge, the elliptical rolled edge is blended with an extension of the parabola

using a blending function. The use of a blending function smooths the junction



even further in that the radius of curvature and a certain number of its derivatives

are continuous across the junction [5]. However, the resulting reflector may be

too large to be practical. Also, the minimum radius of curvature of the reflector

surface in the lit region may be less than desired. Thus, the choice of the blending

function and blending parameters are quite important in the design of compact

range reflectors with blended rolled edges.

Gupta et al. [7] have developed a method to design blended rolled edges for

two-dimensional and circular symmetric reflectors. That method leads to a rolled

edge which minimizes the edge diffracted fields while satisfying certain constraints

regarding reflector size and minimum operating frequency. The rolled edge is

defined in the plane which contains the focal point of the paraboloid for any point

on the rim of the paraboloid. In this study, the design method is extended to three-

dimensional paraboloids with arbitrary junction contours. The reflectors may be

center-fed or offset-fed, Using this design procedure, one obtains a reflector with a

smooth and continuous surface that also satisfies the constraints regarding reflector

height and minimum operating frequency.

In the design procedure developed in this report, the rolled edge plane for

each point on the junction contour is defined. This rolled edge plane is chosen

so that the rolled edge surface is unique and continuous. The continuity of the

specularly reflected field is also guaranteed. However, this rolled edge plane may

not contain the focal point of the paraboloid. Therefore, the concept of an "equiv-

alent parabola" is introduced. The equivalent parabola traces the contour of the

paraboloid in the rolled edge plane and has its focal point in the rolled edge plane.

Using the equivalent parabola, the blending parameters are found for each point

on the junction contour. This is required since the equivalent parabola may be

different for various points on the junction so that the blending parameters will be

2



different along the junction contour. The design procedure presented here is used

to design blended rolled edges for various compact range reflectors. Performance

of some of these reflectors is also studied.

The rest of this report is organized as follows. In Chapter II, the concept

of the blended rolled edge as applied to two-dimensional reflectors is presented.

First, the method of adding a simple rolled edge is developed. Then the procedure

to design the blended rolled edge is given. Some design examples are also given.

In Chapter III, the design procedure given in Chapter II is extended to three-

dimensional paraboloids with arbitrary junction contours. First, the rolled edge

plane is defined. Then the concept of an equivalent parabola is introduced. It is

shown that the equivalent parabola is different for different points on the junction

contour. Next, a complete design procedure is outlined. Finally, some reflectors

are designed using the procedure. In Chapter IV, the performance of some of

the reflectors designed in Chapter III is studied. It is shown that for the best

performance, one should choose the reflector with a fully optimized, blended rolled

edge. Chapter V includes a summary and some general conclusions of this work.



CHAPTER II

TWO-DIMENSIONAL EDGE TREATMENT OF THE MAIN

REFLECTOR

2.1 Introduction

In this chapter a procedure to design blended rolled edges for two-dimensional,

compact range, main reflectors is developed. A two-dimensional reflector system is

equivalent to an infinitely long parabolic cylinder with an infinitely long, line focus.

For this system there is no variation along the axis of the cylinder. Therefore all

analyses and examples in this chapter are done in a plane perpendicular to the axis

of the cylinder. A simple rolled edge is first developed which will provide a termi-

nation to the paraboloid that has slope continuity. Next, "blending functions" are

introduced to further smooth the junction by gradually transforming the parabola

into the simple rolled edge. Finally a procedure is developed to design blended

rolled edges that satisfy the design constraints of maximum reflector height and

minimum operating frequency.

2.2 Adding a simple rolled edge termination

Let the z-axis be the axis of the infinite cyhnder. The plane perpendicular to

this axis is the yz-plane which is used to define the two-dimensional parabola. For

a parabola with a focal length, fc, the defining equation in the yz-plane is given

4



by

y2

z - 4/c" (2.1)

These axes are shown in Figure 1.

Let a finite section of this parabola, y = Ybot to y = ytop, be used as the main

reflector in the compact range as shown in Figure 1. This results in a reflected

field which is discontinuous at the edges of the parabola. Thus there will be

strong diffracted fields from the edges of the parabola. To decrease the magnitude

of the diffracted fields from the top (y = Ytop) and bottom (y = Ybot) edges of

the parabola, let elliptic rolled edges [4] be added to the top and bottom edges

(junctions). The edges where the terminations are added are defined by the point

Pj(yj,zj), where yj = Ytop indicates the top edge (junction), and yj = Ybot

indicates the bottom edge (junction). From the definition of the parabola given in

Equation (2.1), the z coordinate of the junction is

(2.2)
zj - 4fc "

The simple rolled edge termination added to the parabola is elliptic in cross

section as shown in Figure 2. The ellipse is added such that the surface tangent

is continuous at the junction. The addition of the ellipse must also satisfy the

maximum reflector height and minimum operating frequency requirements. Note

that the elliptic surface curves away from the focus of the parabola so that the

reflected field from the rolled edge is out of the target zone. A method to add

elliptical rolled edges is given below.

2.2.1 Ellipse coordinate system

As mentioned above, the rolled edge should be added to the parabola such

that the slopes of the two surfaces (parabola and ellipse) are continuous at the



A

Y

Ytop

Ybot

parabolic
section

I

fc

A

Z

Figure 1: Section of parabola used as a main reflector in a compact range.
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junction. To do so, it is convenient to set up a local coordinate system centered at

the junction between the ellipse and the parabola. This local coordinate system is

referred to as (Xe,ye) and is shown in Figure 2 . To make the slopes of the ellipse

and parabola continuous, it is necessary that the tangent to both surfaces at the

junction be parallel. By defining the re-direction as [5]

y. = -f,j (2.3)

where fij is normal to the parabola at the junction, the two surface tangents will

be aligned in the ze-direction. Thus, the elliptical rolled edge should be added

such that ze and Ye are the two axes of the ellipse. The ellipse coordinate axes are

then given by

ie = zp2:9 + zp3_ , and (2.4)

S,, = yp2Y + yp3_ • (2.g)

Note that the coordinate values are given by

YY (2.6)Vp2
4 2+

-2A

V J

xp2(Ytop,bot) = q=Yp3 , and (2.8)

Xp3(ZItop,bot ) = i _ip2 . (2.9)

Using the coordinate values given in Equations (2.6)- (2.9), the coordinate

transformation between the (ze,ye) system and the (V, z) system is given by

( p2 /= +

• p3 yp3 v,(7) z3
(2.1o)



Ellipse

Me

e

a e

Junction (_ =0)

A

nj

_Parabola

Figure 2: The addition of an elliptic termination to the parabola with slope
continuity at the junction.

with the parametric angle, 7, of the rolled surface defined in the region specified

by

0 < 7 -< 7rn. (2.11)

In this case, 7rn is the maximum value of 7. The parameterization of the simple

rolled edge as a function of 7 will next be formulated.

2.2.2 Rolled edge parameterization

The parameterized equation that defines the ellipse in the (xe,Ye) system is

given as

re(7) = ze(7) xe + Ye(7) Ye. (2.12)



A

Y

A

Zy

Figure 3: Central ellipse used to parameterize the simple rolled edge.

In order to parametefize the ellipse, first consider an ellipse with its center at the

origin of the (y, z) coordinate system as shown in Figure 3. The parameterization

of this ellipse as a function of the parametric angle, 7, is

r ('r) = be sin _f y + ae cos 7 _" (2.13)

where ae is the semi-major axis, and be is the semi-minor axis. Therefore, the

parameterization in the (Ze,Ye) system for the offset ellipse shown in Figure 2 is

given by

:re(')') = aesinT, and (2.14)

Ye('Y) = be(1 - cos-y). (2.15)

9



Substituting Equations (2.14)and (2.15) into Equation (2.12) gives

re(v) = aesinvie + be(1 - cos7):_e . (2.16)

The ellipse can also be described in the (y, z) system of Figure 1 as

reilipse(7 ) = yellipse(V)_r + Zellipse(7) @. • (2.17)

Substituting Equations (2.14) and (2.15)into Equation (2.10) gives

= (aesinT)xp2 + be(1 - cosT)yp2 + Yj , and (2.18)

= (aesinT)Zp3 + be(1 - cos 7)yp3 + zj. (2.19)

The total surface is given in two parts. For Ybot < Y < Ytop, the surface is

parabolic as defined in Equation (2.1). For y > Ytop or y < Ybot, the surface is

given by Equations (2.18) and (2.19) as a function of the parametric angle, 3' • A

procedure to design the simple rolled edges developed in this section is given next.

2.3 Simple rolled edge design

The objective of designing rolled edges is to make the surface of the reflector

as smooth as possible. As shown in the previous section, by proper orientation, the

slope of the ellipse used as a simple rolled edge has been made equal to the slope

of the parabola at the junction. However, there is still a discontinuity in the radius

of curvature across the junction. This can be seen from the expressions for the

The radius of curvatureradius of curvature for the two surfaces at the junction.

of the parabola at the junction is given by [5]

(2.20)

10



and the radius of curvature of the ellipse at the junction is

a2 (2.21)

The absolute value is used in Equations (2.20) and (2.21) since the radii of cur-

vature for the ellipse and parabola are of different sign. In order to make the two

radii of curvature equal, either ae must be made very large or be must be made

very small. For a large ae, the reflector may to be too large to fit in a room. For a

small be, the shadow boundaries of the reflector look like knife edges and diffract

like wedges at low frequencies. Therefore, ae and be are determined from a set of

specified design constraints. The design constraints are the maximum allowable

height (ymaz) and minimum operating frequency. Let _rnaz be the wavelength

at the minimum operating frequency. From past observations [8], the minimum

radius of curvature in the lit region of the reflector should be _maz/4.

There is only one set of values for ae and be which will satisfy both design

constraints. In order to satisfy the height constraint, the maximum value of Yeilipse

from Equation (2.18) must be Ymaz. To ensure this condition, the derivative of

Equation (2.18) with respect to 7 is set equal to zero. This gives the angle of

maximum height as

7maz = arctan ( aexp2_ (2.22)
beYp2 ]

Substituting 7maz and ymaz into Equation (2.18) gives

Ymaz = (aesin'rrnaz)xp2 + be(1 -cOSTmaz)Yp2 + yj • (2.23)

The minimum operating frequency constraint gives the equation [5]

b2 ,_maz

ae 4
(2.24)

11



Table 1: Surfacecharacteristics for elliptic rolled edgeexample

A I 7.25'
l

_,r_z I 15 I

Yto_l 11.5 _

Ybotl 5.5 t
i

ae ! 3.917 I

be I 0.6938 I
i

Therefore, solving Equations (2.23) and (2.24), the parameters ae and be can be

found such that the simple rolled edge will meet the design constraints. In the

next section, a simple rolled edge is designed using the given procedure.

2.3.1 Example

As an example, simple rolled edges are designed for a parabola with a focal

length of 7.25 I, a top junction of 11.5 I, a bottom junction of 5.5 l, and a maximum

reflector height of 15 I. Thus the height of the rolled edge is 3.5 I. For a minimum

operating frequency of 2 GHz, Equations (2.23) and (2.24) are used to find ae

and be. The complete surface characteristics for this reflector are given in Ta-

ble 1. Figure 4 shows the surface with elliptic rolled edges generated using the

characteristics given in Table 1.

To study the performance of the reflector, the scattered fields from the reflec-

tor shown in Figure 4 were computed when a Gregorian subreflector is used for

illumination. In calculating the total scattered field, it is assumed that there is

no direct illumination from the feed or diffraction from the subreflector. The field

pattern is calculated assuming that the main reflector is illuminated only by the

geometrical optics (GO) field reflected from the subreflector [5]. The subreflec-

12
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junctions
............ b ........... : .......
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0.0 2.0 4.0 6.0 8.0

Feet

Figure 4: Example of a two-dimensional parabolic reflector with elliptic rolled
edges.
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Table 2: System characteristics for the dual reflector configuration

/3 5.5 °

a 20 °

asr 5.25 I

bsr 4.308 t

tor eliminates the feed blockage problem and also minimizes the amplitude taper

and cross-polarization errors in the reflected plane wave [9,10]. This dual reflector

system is shown in Figure 5.

In order to find the scattered and diffracted fields from the reflector with sim-

ple rolled edges, there are certain system characteristics which must be determined.

These characteristics, as shown in Figure 5 are: tilt (_) of the subreflector main

axis with respect to axis of symmetry of the parabola, tilt of the axis of symmetry

(z.f axis) of the primary feed antenna relative to the main axis of the subreflector

(a), subreflector semi-major axis length (asr) and semi-minor axis length (bsr).

The specific values used for this example are given in Table 2 [5]. Since this is a

two-dimensional problem, the primary feed antenna is an infinitely long y-polarized

Huygen's line source with unit amplitude.

Physical optics (PO) can be used to calculate the scattered field from the

main reflector. However, conventional physical optics will give false scattering

from the incident shadow boundary. This is due to the fact that conventional PO

assumes the wrong induced surface currents at the shadow boundary. The surface

currents are assumed to be zero in the shadow regions of the structure. This sudden

discontinuity of the induced surface currents across the shadow boundary creates

false scattering at the incident shadow boundaries. Therefore, the method used

14
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Figure 5: Dual reflector compact range configurations.
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for the field calculations is a corrected PO solution [11]. The correction is made by

subtracting the shadow boundary (end point) contributions from the conventional

PO results.

The total scattered field for this reflector is shown in Figure 6 and the total

diffracted fields due to the junction discontinuities are shown in Figure 7. The

diffracted fields are found by subtracting the GO field from the corrected PO

results. Both fields are plotted relative to the GO field in the target zone.

Note that the diffracted fields in the entire target zone (V = 5.51 to 11.51),

are at least 12 dB below the GO fields. As expected, the diffracted fields are the

strongest near the edges (V = 5.51 and 11.51). Without any edge termination, the

diffracted fields will be within 6dB of the GO fields. Thus, the rolled edge has

reduced the diffracted fields in the target zone. However, the ripple in the total

scattered fields in the target zone is still quite large. For accurate measurements,

the ripple should be less than 0.2dB [12]. For a 0.2dB ripple requirement, the

diffracted fields should be at least 32 dB below the GO fields. Thus, the diffracted

fields should be futher reduced. One way to further reduce the diffracted fields is

to smoothly blend the rolled edge from a parabola to an ellipse [6]. This leads to a

blended rolled edge. In the next section, a procedure is developed using blending

functions to form a blended rolled edge.

2.4 Blended rolled edge terminations

To further reduce the unwanted diffracted fields in the target zone, the radius

of curvature of the reflector should be made continuous across the junction. A

blended rolled edge [5] can be used to meet this goal. A blended rolled edge is

generated by blending the simple rolled edge with a part of the paraboloid using

a blending function. The use of a blending function ensures that the radius of

16
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curvature of the surface is continuous across the junction [5]. Also, depending

on the type of blending function used, the first few derivatives of the radius of

curvature can be made continuous across the junction.

As with the simple rolled edge, let the blending function be specified by the

parametric angle, 7. Within the range of the parametric angle, 0 < 7 < 7m, it is

desired that the blending function, b(7), vary from 0 to 1. At 7 = 0, b(0) = 0 and

the surface is parabolic. For 7 -- 7m, then b(Tm) = 1, and the surface is elliptic.

In this way the blended surface can be described by the following equation [8,6]:

fblend(7) = fparabola('Y)[ 1 --b(7)] + fellip,e('Y) b(?) • (2.25)

The fparabola term is the extension of the parabolic surface beyond the junction as

shown in Figure 8. Note that the blended rolled edge is attached to the parabola

at the point, Pj, exactly as the ellipse is added in Section 2.2. The local coor-

dinate system used to add the blended rolled edge is the same as described in

Equations (2.3)- (2.9).

One can choose a blending function such that its value and first r_ - 1 deriva-

tives are zero at the junction where n = 1,2,3 .... Such a function will be called

an n-th order blending function. Thus, for an n-th order blending function,

b(n)(0) # 0, and (2.26)

bC')(0) = 0,m = 1,2,...,n- 1. (2.2¢)

For an n-th order blending function it can be shown [5] that the radius of curvature

and its first n - I derivatives are equal to zero at the junction. Since the r_ - 1

derivatives of the blending function are zero at the junction, this ensures that the

n - 1 derivatives of the radius of curvature are continuous across the junction [5].

Therefore, the junction between the parabola and a blended rolled edge is smoother

than the junction obtained from adding a simple rolled edge.
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A few blending functions and their order are presented below:

1. First order (b(O) = 0, b'(O) _ O)

Linear blending:

b(7) = 3' (2.28)
7rn

2. Second order (b(0) = 0, b'(0) = 0, b"(0) :fi 0)

Square blending:

Cosine blending:

b(7) = _ 1-cos

3. Fourth order (b(0) = 0, bt(0) = 0, b"(0) = 0, biV(0) # 0)

Cosine squared blending:

b(3') = _ 1-cos
")'m/

(2.29)

(2.30)

(2.31)

The complete blended surface can now be defined. For a two-dimensional

surface, Equation (2.25) will have Y and z coordinates. These are defined as

Yblend('Y) "- Yparabola('Y)[ 1 --b('y)]-k yellipse('y)b('y) , and (2.32)

Zblend(7) -- Zparabola("/)[1 -- b(')')] -4- Zellipse("/)b('y) . (2.33)

The extended parabola that is to be blended to the rolled edge will have a

maximum value defined as, Zrrt, as measured along the xe-axis. The Yparabola term

from Equation (2.32) can then be described as a linear displacement along this

ze-axis as

Yparabola(7) = 7 Zp2 + yj. (2.34)
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The Zparabola term found from Equation (2.1) is

[Yparab°la("f )]2 (2.35)
Zparab°la(_f ) = 4 fc

When 7 = 7m, Equation (2.34) gives the maximum value of the extended

parabola as XmZp2 + yj. This is the section of the parabola that is blended with

the ellipse to give the complete blended rolled edge termination.

By substituting Equations (2.18) and (2.34)into Equation (2.32), and also

substituting Equations (2.19) and (2.35) into Equation (2.33), the general two-

dimensional blended rolled surface can be expressed in the (y, z) system as

1Ybt_,_(_) = "Y _p2 + _j [1- b('y)l

+ [(_.sin_)_p2 + b_(l- co_)_p2 + Yilb(_) (2.36)

and

Zblend("f ) 4.fc [1- b(7)]

+ [(aesin_)zp3 + be(1 - cosT)yp3+ zj]b(7). (2.37)

The total surface is again given in two parts. For Ybo_ < Y < _/top, the surface

is parabolic as given by Equation (2.1). For y > Ytop or g < Ybot, the new blended

surface is described by Equations (2.36) and (2.37) as a function of the parametric

angle, 7 •

The terms ae,be,r.m, and 7m used in Equations (2.36) and (2.37) are the

four blending parameters that are used to define the blended rolled edge termina-

tion. Depending on the maximum available reflector height and target zone size,

a blending function can be chosen which will minimize the diffracted fields due to

the junction discontinuity between the parabola and the blended rolled edge termi-

nation [5]. Therefore, the next step in the design procedure is to find the blending
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parameters so that the design constraints applied to the reflector are satisfied. A

procedure to find these parameters is given next.

2.5 Blended rolled edge design

In Sections 2.2 and 2.4, a procedure has been developed to add a blended

rolled edge to a compact range, main reflector. The design parameters for the

main reflector are focal length (re), junction height (yj), total available height

(Yrrmz), minimum operating frequency (fmin), and choice of a blending function

(b(7)) • The difference between the maximum height and the top of the parabola

specifies the amount of rolled edge to be added. This is defined as

re = Ymaz -- ?]top • (2.38)

In order to design a blended rolled edge for a main reflector, the blending pa-

rameters ae, be,xm, and 7m must be determined. It is desired to find an optimum

set of blending parameters which also satisfy the constraints regarding the avail-

able height and the minimum operating frequency. The optimum set of blending

parameters is defined as the one which minimizes the surface discontinuity at the

junction.

For a specific blending function used to add the roiled edge, the first non-

continuous derivative of the radius of curvature is the discontinuity that should

be minimized. For an n-th order blending function as defined in Section 2.4, the

discontinuity at the junction is found from the expressions for the derivatives of the

radius of curvature on both sides of the junction. Since for a n-th order blending

function the first n - 1 derivatives are continuous across the junction, then

= \d-_-/ ,m-- 1,2,...,n- 1 . (2.39)
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Table 3: an bn(O) for various blending fimctions

I[ Order Type

First (n = 1) Linear

Second (n = 2)

Fourth (n = 4)

Square

Cosine

Cosine squared

,_.b"(O)

12

7m

48

a -- 72

90_r 4

It is the n-th derivative which is discontinuous at the junction. For a given n-th

order blending function, the discontinuity in the n-th order derivative of the radius

of curvature is given by [5]

afck(n+3) ( ae fcbe k3 _)_"- (_m/Tm)" (_m-TTm)+ (x,./Tm)2 (2.40)

where a is a constant that depends on the type of blending function being used [5]

and n is the order of the blending function. For the blending functions defined in

Section 2.4, the values for a are given in Table 3. The parameters ae, be, Zrn, and

7rn are the blending parameters to be optimized, and k is given by

k = _/1+ (y_-/2/c)2. (2.41)

In order to optimize the rolled edge termination, the error function given

in Equation (2.40) must be minimized while still meeting the design constraints.

The method of Lagrange Multipliers is used to give the following function to be
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minimized [7]:

(Rsh-Arna'/4) 2F = + 41 + 42 ' (2.42)

where Rsh isthe actualradius of curvature of the blended rollededge at the shadow

boundary and Yt is the total reflectorheight. Also, 41 and 42 are the Lagrange

multipliersfor the maximum height and minimum radius of curvature in the lit

region, respectively. Since it is necessary to meet the design constraints,these

two terms willbe heavily weighted. The terms Ymaz and 4maz/4 are the specified

design constraints,where ymaz isthe main reflectormaximum height and Amaz/4

isthe minimum radius of curvature in the lltregion of the reflector.The conjugate

gradient method [14}was used to minimize the function F, thus determining the

optimum blending parameters. When using the conjugate gradient method, the

terms y and Rsh are varied until they are within a specified difference from ymaz

and Amax/4. The resulting values for ae,be, zm, and 7m are the optimized blending

parameters.

Since the desired minimum is a value of zero, all the terms in Equation (2.42)

have been squared to keep the minimum value of the function from going negative.

Also the term associated with the radius of curvature is normalized since the radius

of curvature is much smaller than the maximum height and the error term (e,_).

Normalizing this term will thus help to minimize the difference between Rsh and

A,,_/4 .

The six variables that are optimized by the conjugate gradient method for

the function given by Equation (2.42) are ae, be, Zm, Tm, A1, and A2. It was found

that the four terms ae,be, zm,Tm are not linearly independent [7]. The 7m term

was therefore kept constant during optimization, leaving five variables to be found.

In Equation (2.42), the error term, the total reflector height (Y), and the radius
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Table 4: Rolled edge variations with junction height (Yj)

Shadow boundary radius of curvature = 0.1229'

7m = 105 ° fc = 7.25' re = 3.5'

yj ae be Xm error

11.5000 0.5000 2.807 10.905 19.5540

10.5000 0.5000 2.9058 10.5158 17.9886

9.5000 0.5000 3.0181 10.1974 16.3591

8.5000 0.5000 3.1344 9.9109 14.8664

7.5000

6.5000

5.5000

0.5000

0.5000

O.50OO

3.2540

3.3755

3.4968

9.6597

9.4457

9.2711

13.5002

12.2666

11.1647

of curvature at the shadow boundary depend on the junction height and focal

length of the parabola. Thus, the blending parameters will change with these two

parameters. However, it was found that the variation in the blending parameters

is not very large. This can be seen in Tables 4 and 5. The blending parameters

for both tables were found using a cosine squared blending function, a minimum

operating frequency of 2GHz, the amount of rolled edge added was 3.5', and

7rn was 105 °. Table 4 shows how the blending parameters vary with the junction

height, and Table 5 shows how they vary with the focal length of the reflector. The

value in the error column for the two tables is found by substituting the optimized

blending parameters into Equation (2.40).

The fact that the rolled edge changes with junction height will also be very

important in the next chapter where three-dimensional reflectors are considered.

For three-dimensional reflectors, the junction height varies continuously along the

26



Table 5: Rolled edge variations with focal length (/c)

Shadow boundary radius of curvature = 0.12291

7m = 105 ° yj = 11.5 t re = 3.5 t

beae zm error

7.2500 0.5000 2.807 10.905 19.5540

7.5000 0.5000 2.8285 10.7308 20.5915

8.0000 0.5000 2.8814 10.5007 22.2676

8.5000 0.5000 2.9257 10.3098 23.9617

9.0000 0.5000 2.9620 10.1514 25.6560

9.5000 0.5000 2.9910 10.0166 27.3949

0.500010.0000 3.0140 9.9033 29.1462

junction contour of the main reflector paraboloid. Therefore, different blending

parameters will be needed as the position along the junction changes.

2.6 Blended rolled edge design example

For a two-dimensional reflector, a blended rolled edge must be designed for

both the top and bottom junctions. As shown in Section 2.5, this is necessary since

the junction heights are different. The same parabola used for the simple rolled

edge design in Section 2.3.1 will now be used to design the top and bottom blended

rolled edges. This will show the improvement in performance using the blended

rolled edges. The parabola from Section 2.3.1 had a focal length of 7.25 t, the

top junction at 11.5 !, the bottom junction at 5.5 t, and a maximum height of 15 _.

The distance from the main origin to the target zone along the z-axis is 20 f. The

difference between ymaz and Ytop is the amount of blended rolled edge added to the
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Table 6: Surface characteristics for blended rolled edges

Shadow boundary radius of curvature = 0.1229'

7rn = 105 ° fc = 7.251 re = 3.5'

Top junction

Yiop 11.5'

ae 0.5'

be 2.807'

xm 10.905'

Bottom junction

Ybot 5.5'

ae 0.5'

be 3.812'

Zm 10.088'

parabola. From Equation (2.38), this difference gives re = 3.5 t, as the amount of

blended rolled edge added. The minimum operating frequency is 2 GHz and cosine

squared blending is used to generate the blended rolled edge. The blended rolled

edge design procedure given in Section 2.5 is used to find the blending parameters.

The surface characteristics and blending parameters are given in Table 6 for both

the top and bottom junctions. The two-dimensional reflector with blended rolled

edges is shown in Figure 9.

Figures 10 and 11 show the scattered fields from the blended rolled edge

reflector. The reflector is illuminated by the Gregorian subreflector discussed in

Section 2.3.1. Again the corrected PO method is used to calculate the scattered

fields. The total scattered field is shown in Figure 10 and the diffracted field is
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shown in Figure 11. All fields are plotted relative to the same level for comparison.

Note that the ripple in the total scattered fields in the entire target zone is

less than 0.2 dB. Thus, the size of the usable target zone is equal to the size of

the reflector. The diffracted fields (Figure 11) are at least 35dB below the GO

fields. For the simple rolled edge, the diffracted fields were only 12 dB below the

GO fields. Thus, the design procedure leads to a good blended rolled edge.

2.7 Summary

A procedure to design a blended rolled edge for two-dimensional reflectors was

developed. The design procedure leads to a blended rolled edge that guarantees low

diffracted fields and meets the constraints regarding the total height and minimum

radius of curvature. First a simple rolled edge was introduced in order to develop

the rolled edge (Ze,Ye) coordinate system. This coordinate system defines a plane

in which the blended rolled edge is added. Note that the plane (the rolled edge

plane) contains the focal point of the reflector. As shown in the next chapter, this

will be important for designing a rolled edge for three-dimensional reflectors.
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CHAPTER III

THREE-DIMENSIONAL EDGE TREATMENT FOR THE MAIN

REFLECTOR

3.1 Introduction

In this chapter the design procedure presented in Chapter II is generalized

to three-dimensional main reflectors with arbitrary edge (junction) contours. For

three-dimensional reflectors, it is desired that the rolled edge be added so that the

surface radius of curvature is continuous across the junction. The rolled edge plane

must also be chosen so that the whole surface is smooth and continuous. Finally, in

order to use the design procedure outlined in the last chapter, it is necessary that

the focus of the parabola and the rolled edge be in the same plane. In order to meet

the first two requirements, the rolled edge plane should be chosen very carefully.

Such a rolled edge plane is defined in this chapter. This rolled edge plane may

not necessarily contain the focal point of the paraboloid. Therefore the concept of

an equivalent parabola is introduced. The equivalent parabola has its focus in the

rolled edge plane and traces the part of the three-dimensional paraboloid that lies

in the rolled edge plane.

3.2 Method to add rolled edge

When adding a rolled edge to the compact range main reflector, one should

make sure that the surface is smooth and continuous. In the case of blended rolled
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edges, the curvature of the reflector at the junction between the rolled edge and the

paraboloid should be continuous. The continuity of the surface curvature ensures

that the reflected fields will be continuous across the junction. In the case of a

paraboloid, the reflected wavefront is a plane wave. Thus, a blended rolled edge

should be added such that the reflected wavefront just across the junction between

the paraboloid and rolled edge is also planar. The reflected field is then planar on

both sides of the junction. Along the junction contour (rim of the paraboloid) the

reflected field caustic is at infinity, or the normal curvature of the reflected wave

is zero. Thus, at a given point on the rim, the tangent to the junction contour is

one principal direction (say -?2 as shown in Figure 12) of the reflected wavefront

with corresponding principal curvature (say 1¢2) equal to zero. Let "71be the other

principal direction. Then from Euler's theorem [16] the normal curvature of the

reflected wavefront in any other direction (say t) is

t¢ = t¢1 COS2a (3.1)

where t¢1 is the principal curvature of the reflected wavefront in the -?l-direction and

is the angle between -71 and t. Let the blended rolled edge be added in a plane

other than the edge plane (containing the rim tangent and the surface normal).

For the rolled edge plane, cos2a # 0 and t¢ = 0. Then, from Equation (3.1),

t¢1 = 0. Thus, the reflected wavefront from the rolled edge side is also planar.

Note that for a smooth and continuous surface, the normal to the rolled edge at

the junction contour should be continuous. Thus, the rolled edge plane should

contain the surface normal. Therefore, for small diffracted fields from the junction

between the rolled edge and the paraboloid, the rolled edge plane should be other

than the edge plane and should contain the surface normal.

The plane of incidence is one such plane. However, consider a reflector which
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Figure 13: Surface discontinuities caused by adding the rolled edge in the plane
of incidence.

is offset such that the main origin is outside the zy-projection of the junction

contour. If the rolled edge is then added in the plane of incidence, the reflector

surface as shown in Figure 13 will have discontinuities at the lower end corners. If

the reflector is offset such that the main origin is within the xy-projection of the

junction contour, then adding the blended rolled edge in the plane of incidence will

not cause any surface discontinuities. However, this would not normally be done

due to the feed blockage problem. Another candidate for the rolled edge plane

is a plane perpendicular to the junction contour. Note that this plane contains

the surface normal too. However, adding a rolled edge in this plane will lead to

a reflector surface with discontinuities along the corners as shown in Figure 14.

Also, as shown in Figure 15, for arbitrary rim shapes, the rolled edge planes may

intersect. Thus, the reflector surface is not defined uniquely. Therefore, the rolled
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edge plane should be selected very carefully.

the above requirements is defined below.

3.3 The rolled edge plane

A rolled edge plane which meets all

It is first necessary to define a three-dimensional surface in which the blended

rolled edge terminations can be added. Let the z-axis of the (x,y,z) cartesian

coordinate system be the axis of symmetry of a paraboloid. Therefore, a paraboloid

with a focal length of fc can be described in three dimensions as

x2 + y2

z -- 4h (3.2)

The section of a paraboloid used for a main reflector is shown in Figure 16.

The paraboloid can have any arbitrary junction contour. This arbitrary three-

dimensional junction contour will then have a blended rolled edge added to it.

Let Qj be a point on the rim of the paraboloid used as a compact range

reflector. Also, let nj be the inward normal at Qj. Then define a vector

_e = -fij • (3.3)

In three dimensions, the expression for the S'e unit vector is given by [5]

= Yp, + vp2 + yp3 (3.4)

where the coordinate values are given as

Ypl = Cz_ + y2 + 4./:2 (3.5)

YJ , and (3.6)
Yp2 = Cz_ + y2 + 4 Z

-25 (3.7)Yp3 :
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Let Pj be the projection of the point Qj on the (z,y) plane, and O' be the

projection of the center of the reflector surface on the (z, y) plane. Then, as shown

in Figure 17, define a unit vector, 15, which is perpendicular to the radial line OIPj.

Note that

15 = Pl i- + P2:Y (3.8)

or

- zj - Zavgp = -(Yj Yavg) _ + :_ (3.9)

where (zj,y/) are the coordinates of the point Pj and (z,,,g,ya,,g) are the coordi-

nates of the point 0 I. The terms Xav9 and Yavg are given by

ymaz + Ymin _ Ytop + Ybot , and (3.10)
Yavg = 2 - 2

Xrnax + Xrnin Xrht + Xleft
= (3.11)Xavg = 2 2

where ytop, Ybot, Xleft, and Xrh t are the dimensions of the target zone as defined

in the Appendix. The vector 15 is shown in Figure 17 for both the offset and

symmetric target zones. The rolled edge plane is then defined by (ze,Ye), where

_x15

ie - x Pl - +  peY+ (3.12)

and the coordinate values are given by

Xpl - -YI_P2 (3.13)
Ypg

zp2 = Yp3Pl (3.14)
Ypg

zp3 - YplP2 - Yp2Pl ,and (3.15)
YPg

Ypg = ¢(Yp3P2) 2 + (Yp3Pl) 2 + (YplP2 - Yp2Pl) 2. (3.16)

Note that the (ze,ye) plane contains the surface normal at the junction and is

different from the edge plane. Also, the zy-projection of the surface blended in the
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(ze,ye) system will be a radial line out from the center of the reflector. Blending

is done along this radial line. Thus, the blended surface is unique and continuous.

In Chapter II, a method to find the optimum blended rolled edge parameters

was given. In the method, it was assumed that the focal point of the parabola

lies in the rolled edge plane (two-dimensional system); however, the (re, Ye) plane

defined above may not contain the focal point of the paraboloid. This is especially

true for offset-feed reflectors. To solve this problem, one can define an equivalent

parabola in the (Xe,Ye) plane. This equivalent parabola traces the part of the

original paraboloid which also lies in the (Ze,Ye) plane. A simple method to find

the equivalent parabola is given next.

:i.4 Method to find the equivalent parabola

In order to specify the equivalent parabola, its focal length and axes should

be determined. Let (y I, zl), as shown in Figure 18, be the axes of the equivalent

parabola and fct be its focal length. Since the junction point (Q') lies on the

equivalent parabola and _e is the outward normal to the paraboloid at the junction

point, _e is also normal to the equivalent parabola at Qj. Let xe be the tangent

vector to the equivalent parabola. Then from Section 2.2.1, the transformation

between the (y', z') system and the (ze,ye) is given by

) )()= %2 + Y} (3.17)
1 I I

zt('Y) xp3 Yp3 Ye(?) zj

where (y_,z_) are the coordinates of the junction in the (y',z')system.
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The coordinate values for the (yt, z t) system are

t

t YJ (3.18)
Yp2 = _/(y_)2 + 4(fct)2

-2s'
3 = (3.19)

v/(y_)2+4(f,)2
t t and (3.20)xp2 -- Yp3 ,

I !

zp3 = Yp2. (3.21)

Note that JcI is the focal length of the equivalent parabola.

From the transformation given by Equation (3.17), the junction height and

focal length can now be found. Substituting Equations (3.18) - (3.21) into Equa-

tion (3.17), a point (l, k) in the (ze,ye) system will be defined in the (9 _, z _) system

as

i Yj ,
y - l+---_k+yj , and (3.22)

z' y; 2f ,
= _l- -yk + zj (3.23)

where A is given as

A = i(y_)2 + 4(fct) 2 (3.24)

Since the coordinate values given by Equations (3.18)- (3.21) are for the top

junction, Equations (3.22) and (3.23) are thus defined with respect to the top

junction. From Equation (2.1), z I is given by

, (¢)2
z- 4fcl (3.25)

Equating Equations (3.23) and (3.25) gives

(¢)2 Y_l- 21:' (y_)2
4--_cI = -_- _ k + 4/ct (3.26)
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Next square the value yl given in Equation (3.22) and substitute the result into

Equation (3.26) to give [15]

,)2l 4- _ k 4- 2Ak = O. (3.27)

If the coordinate values for the bottom junction were used, the following equation

must be satisfied:

--T- l + k 4- 2Ak = o. (3.28)

Equation (3.27) has two unknowns: fcI and y;. Thus, by using two points on

the surface of the main paraboloid that are also in the rolled edge plane, the focal

length and junction height of the equivalent parabola can be found. One should

know the coordinates of the two points in the (Ze, Ye) system. The coordinates of

the two points in the (ze,ye) system can be found from the transformation [5]

(}/y('r) = _p2 yp2 YeC'Y)
Z('y) Xp3 Yp3 Zj

(3.29)

where the coordinate values are given by Equations (3.5)- (3.7) and Equations (3.13)

to (3.16). For a point (l,k)in the (xe,ye) system, Equation (3.29) gives

z = zpll -4- Ypl k 4. zj (3.30)

y = zp2l 4. yp2k 4. yj , and (3.31)

z = zp31 + yp3k + zj. (3.32)

Since the point (z,y,z) lies on the paraboloid, then from Equation (3.32), one

obtains

x 2 4- y2

4fc -- zp31 + Yp3 k + zj. (3.33)
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Substituting Equations (3.30) and (3.31) into Equation (3.33) and then simplifying

gives

-b -4- v/b 2 - 4ac

k = 2a (3.34)

where

a

b

and

c

= y21 + yp22 (3.35)

= 2(Xpl Ypl + xp2 Yp2) l + 2ypl _j + 2yp2 yj - 4fc Yp3 (3.36)

= (x21 -4- xp22)l 2 A- 2(Xpl xj -4-Xp2Yj)l--4fcXp31 • (3.37)

Thus, for a given l one can find k so that the point (l, k) lies on the paraboloid.

Since the equation for k is quadratic, there will be two solutions. To minimize

' it is desired to choose the value of knumerical error when calculating f' and yj,

that has the smallest magnitude. When this value of k is substituted into Equa-

tion (3.27), the numerical result will then have the smallest difference from zero.

The value of k with the smallest magnitude is

-b + _b 2 - 4ac

k = 2a (3.38)

with a,b, and c as given in Equations (3.35) - (3.37).

It is now possible to find the focus and )unction of the equivalent parabola

from Equation (3.27). Since this equation is a single non-linear equation of two

variables, two different pair of (l, k) should be used to solve the equation. This

will give two equations and two unknowns which can be solved simultaneously by

Newton's Method [17]. The equivalent height and focal length along the junction

contour for different reflector systems are next computed.
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3.5 Examples of the equivalent parabola focus and junction height
variation

Equation (3.27) can be solved for any type of main reflector geometry. The

reflector can be either center-fed or offset-fed. The reflector can also have any

arbitrary junction contour. Since the optimum parameters of a blended rolled

edge depends upon the junction height and the focal length of the reflector, the

equivalent height and focal length along the junction contour for various reflector

systems are computed in this section. This will show the maximum variation in

these parameters and will help in designing the blended rolled edge.

The center-fed systems are discussed first. The surface characteristics for the

two different center-fed reflectors are given in Table 7. The different junction

contours referenced in this table are formulated in the Appendix. For the center-

fed system, the roiled edge plane is the same as the plane of incidence. Thus, the

focal point always lies in the rolled edge plane. The first reflector considered has

a circular junction as shown in Figure 19. A center-fed reflector with a circular

junction contour is a body of revolution. Therefore, a center-fed reflector with a

circular junction contour has no variation in the junction height or focal length of

the equivalent parabola as shown in Figure 20.

The center-fed reflector with the concave junction contour is no longer a body

of revolution. This type of reflector is shown in Figure 21. Although the focal

length of the equivalent parabola does not change, the junction height does vary

as shown in Figure 22.

The next set of reflectors considered are offset reflectors. The focus and junc-

tion height for both a circular and concave contour are found. The surface charac-

teristics for these reflectors are given in Table 8. These reflectors have the same

size target zones as the center-fed reflectors. The only difference is that they have
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Table 7: Surface characteristics for center-fed reflector examples

contour

/c

Ytop

Ybot

Zleft

Xrht

circular

7.251

3 I

_3 t

-3'

3 !

concave

7.25 I

3I

_3 I

_4 I

41

Table 8: Surface characteristics for offset reflector examples

contour

Ytop

Ybot

Zleft

Xrht

circular

7.25 I

11.5 !

5.5 I

_3 t

31

concave

7.251

11.5 l

5.5'

_4 l

41

been shifted up.

The focus and junction height of the equivalent parabola are shown in Fig-

ure 24 for the circular contour and in Figure 26 for the concave contour. Figure 23

shows the offset reflector with a circular junction contour while Figure 25 shows a

offset reflector with a concave junction contour. As can be seen from the Figures 24

and 26, both the focus and junction height vary for the offset reflectors. This is

due to the fact that for offset reflectors, the rolled edge plane is no longer the plane

of incidence. Therefore, more than one set of blending parameters will be needed

for these surfaces. However, since the variation is gradual, only a limited number
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Figure 27: Equivalent parabola with a negative junction height.

of equivalent parabolas and their corresponding blending parameters are required.

The negative value for some of the junction heights is due to the fact that

the top junction equation is used to find the equivalent parabola. This was shown

in Section 3.4. Figure 27 shows an example of the equivalent parabola and the

position of the junction when the junction height is negative.

Now that an equivalent parabola can be found, a complete design procedure

can be outlined. This procedure is given in the next section.
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3.6 Design procedure for a blended rolled edge

In order to design a blended rolled edge for a compact range main reflector,

certain physical quantities about the paraboloid must be specified. Specifying

these quantities will be the first step in the overall design procedure which follows:

1. Specify the paraboloid focus (fc), the minimum operating frequency (fmin),

the maximum dimensions of the reflector (ymaz,Ymin, Zmaz, Zmin), and the

dimensions of the target zone (Yt_, Y_t, xleft, Zrht).

2. Select a blending function.

3. For a given point on the junction contour, find the rolled edge plane. This

is the (ze,ye) plane as developed in Section 3.3.

4. Find the junction height and focal length of the equivalent parabola in the

plane of the rolled edge. This procedure is given in Section 3.4.

5. Use the design procedure given in Section 2.5 to find the optimum rolled

edge parameters for the given point on the junction contour.

6. Add the blended rolled edge to the equivalent parabola in the equivalent

parabola coordinate system. This is the (yl, z 1) system as defined in Sec-

tion 3.4.

7. Transform each blended rolled edge back to the main (z,y,z) coordinate

system in order to regenerate the complete main reflector.

The method to transform the blended rolled edge coordinates from the equiv-

alent parabola system (y¢, z _) to the main coordinate system (z, y, z) is given next.
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3.7 Transformation from the equivalent parabola system to main co-

ordinate system

To transform the blended rolled edge optimized in the (l/, zl) system to the

main (z,y,z) system, first solve Equation (3.17) for (ze,ye). This gives

Ze = zp2 Yp2 - YJ (3.39)

I ! Z! r
Ye zp3 Yp3 - zj

/ I _CI I I xThe coordinate values txp2 , p3,Yp2, Yp3] are the same as given in Equations (3.18)

to (3.21). The terms yl and z ! are the expressions for the optimized blended rolled

edge in the (yW, z t) system. Next, substitute Equation (3.39) into Equation (3.29)

to give

x Zpl 9pl t t 9t I

zp2 Yp2 -- Yj + YJ .
y = xp2 Yp2 t t z r I

Xp3 Yp3 Zj

z zp3 Yp3 zj

(3.40)

This is the desired transformation from the (y', z') system to the (z, y, z) system.

Since the blending is done in the (yl, z I) system, the expressions for yl and z I are

needed. These expressions can be found using Equations (2.36) and (2.37) and are

given below:

y'(-y) = _' zp2 -4- y --

+ [(aesin,T)xp2 + be(1-cosv)Yp2 + y_]b(7 ) (3.41)

and

+ y 12) [1- b(7)]4/,

+ [(ae sinT)x_3 + be(1- cosT)y_3 + z_lb(7) (3.42)

where ae, be, Zm, and 7m are the optimum blending parameters in the (yf, z 1) sys-

tern.
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Equation (3.40) is then used to transform each optimized rolled edge from

the local (y',z') system to the (z,y,z) system. In the (z,y,z) system, each opti-

mized rolled edge is then added to the corresponding junction point of the three-

dimensional reflector. The procedure given in this section can now be used to

design a blended rolled edge for a compact range main reflector. Design examples

using this procedure are given in the next section.

3.8 Three-dimensional blended rolled edge design examples

The design procedure given in the previous section is now used to design an

optimum blended roUed edge for the two offset reflectors discussed in Section 3.5.

For both reflectors, the minimum operating frequency is 2 GHz, the focal length is

7.25 I, and cosine squared blending is used to generate the blended rolled edge. The

height of the rolled edge added to both reflectors is selected to be 3.5 I. Therefore,

re is equal to 3.5 r. The formulation of the different junction contours is given in

the Appendix. The equations for the dimensions of the target zone and maximum

reflector size are also given in this Appendix. From Equations (A.1)-(A.4) in the

Appendix and the target zone dimensions given in Table 8, the dimensions of the

defining rectangle for the concave junction contour reflector are:

yrnaz = 15 I

Ymin = 2t

Xma_: = 7.51 , and

Xmi m = -7.51 .
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Using Equations (A.11)-(A.14) in the Appendix, the maximum dimensions of the

circular junction contour reflector are:

Yrnaz = 15 t

Yrnin = 2t

Xrna:t = 6.5 t , and

Xmi m = --6.5 t .

The zy-projection of the maximum dimensions of the reflector with the concave

junction contour forms a rectangle of the same dimensions as the defining rectangle.

The xy-projection of the maximum dimensions of the reflector with a circular

junction contour forms a circle.

Tables 9 and 10 give the optimum blending parameters for the two reflectors.

Note that the optimum blending parameters are given for a few points on the rim

of the reflector. For other points on the rim, the blending parameters were found

by interpolating these values. Since the junction height and focal length of the

equivalent parabola has slow variation, the interpolation gives a very good ap-

proximation. The focal length and the junction height of the equivalent parabolas

are also given in the tables.

The reflectors with optimum blended rolled edges generated using the blending

parameters from Tables 9 and 10 are shown in Figures 28 to 32 for various view

angles. The bold line in the plots of the surfaces indicates the junction contour

between the paraboloid and the blended rolled edge. As can be seen from Figure 30,

the zy-projection of the reflector with a concave junction contour has exactly the

same dimensions as the defining rectangle.

Figure 33 shows the concave rim reflector where the blended rolled edge is

generated from a single set of blending parameters. The blending parameters for
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Figure 28: Blended rolled edge added to a circular junction contour (Front view).

58



Z

X

Figure 29: Blended rolled edge added to a circular junction contour (View angle:
0 = 80°, _ = - 3o°).
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Figure 30: Blended rolled edge added to a concave junction contour (Front view).
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Figure 31: Blended rolled edge added to a concave junction contour (View angle:
0 = 80o,_ = -30°).
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Figure 32: Blended rolled edge added to a concave junction contour (View angle:
0 = 30 °, _b = 150°).
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Table 9: Optimum rolled edge parameters for a circular junction contour

0

0 °

15 °

45 °

90 °

120 °

150 °

180 °

Shadow boundary radius of curvature = 0.1229 r

7m = 105° re = 3.51

7.2500

7.3800

8.2000

8.6500

8.1100

7.5400

7.2500

r

Yj

11.5000

11.3000

9.4000

2.5500

-1.7100

0.5000

0.5000

0.5000

0.5000

0.5000

be

2.7983

2.8351

3.0998

3.6330

3.8029

Xm

10.8637

10.7234

9.8753

9.0019

9.2251

error

19.7561

19.8224

19.0642

11.7892

8.5386

-4.5300 0.5000 3.8084 9.7680 7.3133

-5.5000 0.5000 3.7972 10.0721 6.9793

this surface are for 0 = 0 ° from Table 10.

From Figure 33, the surface using a single set of blending parameters is larger

than the desired defining rectangle. Usually, the maximum dimensions for a reflec-

tor are chosen so that the reflector will fit in a specified room while leaving space

between the room walls and the reflector for any necessary absorber material. This

is how the defining rectangle dimensions are found. Therefore, a reflector with a

blended rolled edge generated from a single set of blending parameters may be

too large to fit in the required space. Being able to exactly specify the dimen-

sions of the main reflector is another advantage to using multiple sets of blending

parameters to generate the blended rolled edge.
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Table 10: Optimum rolled edge parameters for a concave junction contour

Shadow boundary radius of curvature = 0.1229 t

7m = 105° re : 3.5 t

!

Vj be0 ae • m error

0° 7.2500 11.5000 0.5000 2.8070 10.9050 19.3173

30 ° 7.7300 11.7200 0.5000 2.8410 10.7300 21.3239

49.09 ° 8.3100 12.8300 0.5000 2.7990 10.8090 25.5636

60 ° 8.6600 10.0400 0.5000 3.0750 9.9400 21.2228

75 ° 8.8600 6.5600 0.5000 3.3810 9.2970 16.4578

90 ° 8.7500 3.6600 0.5000 3.5840 9.0650 12.7710

105 ° 8.4900 1.5700 0.5000 3.6660 8.8980 11.5010

120 ° 8.2000 0.4500 0.5000 3.8050 9.0610 9.3977

130 ° 7.9800 0.4900 0.5000 3.8490 9.0640 8.9273

145 ° 7.6300 -2.7500 0.5000 3.9120 9.3820 7.6514

157 ° 7.4300 -4.3700 0.5000 3.8640 9.7610 7.0979

7.3000168 ° -5.2000

-5.5000

0.5000

0.5000180 °

3.8320

3.8120

9.9990

10.08807.2500

6.9596

6.9420
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Figure 33: Paraboloid with a blended rolled edge generated from a single set of
blending parameters (Front view).
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3.9 Summary

In this chapter a method to design blended rolled edges for three-dimensional,

compact range, main reflectors was presented. The method leads to a smooth and

continuous reflector and is applicable to center-fed as well as offset-fed reflectors

with arbitrary junction contours. The design procedure also guarantees that the

reflector will fit inside the given dimensions. Performance of a reflector designed

using the above method is discussed in the next chapter.
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CHAPTER IV

PERFORMANCE OF OPTIMIZED COMPACT RANGE

REFLECTORS

4.1 Introduction

In this chapter, the scattered fields from offset-fed concave junction reflectors

in the target zone are discussed. The concave edge reflector with a blended rolled

edge generated from a fixed set of blending parameters (see Figure 33) and the

reflector with a blended rolled edge generated from a varying set of blending pa-

rameters (see Figure 30) are studied. It is shown that the reflector with the varying

blended rolled edge provides improved performance. The total scattered fields and

the diffracted fields from both types of reflectors are computed. This way, the

improvement resulting from the blended rolled edge with varying blending param-

eters can be easily observed. The subreflector system configuration described in

Section 2.3.1 is used for these three-dimensional reflectors. Since these reflectors

are three-dimensional, the primary feed antenna will no longer be a line source.

For these examples, a V-polarized, Huygen's point source with unit amplitude is

used as the primary feed antenna. The operating frequency is 2GHz, and the

distance from the reflector to the target zone is 20 I.
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4.2 Scattered fields along vertical cuts

Figure 34 shows the scattered fields in the target zone along a vertical cut

with the horizontal displacement (x) equal to zero. The total scattered field as well

as the GO component of the total scattered field for both reflectors are plotted.

Since in the target zone, the GO fields are due to the parabolic section of the

reflector, both reflectors have the same GO scattered fields. Note that the total

scattered fields of both reflectors oscillate around the GO scattered fields. These

oscillations are due to the diffracted fields from the junction between the paraboloid

and the blended rolled edge. The ripple of the oscillations for the reflector with

the fixed blending parameters is slightly larger than that for the optimized rolled

edge (varying blending parameters). Thus, the diffracted field level for the non-

optimized rolled edge (fixed blending parameters) is slightly higher than that for

the optimized rolled edge. This can be seen in Figure 35 where the diffracted

fields for the two reflectors are plotted. The diffracted fields were obtained by

subtracting the GO fields from the total scattered fields.

All field components are plotted relative to the same level for comparison.

Note that for both reflectors, the diffracted fields are at least 30 dB below the GO

fields. Also, note that the diffracted fields shown in Figure 35 are slightly higher

than the diffracted fields for the two-dimensional case shown in Figure 11. This is

due to the fact that the two side-junction contours are causing diffracted fields in

the target zone of the three-dimensional reflector.

Figure 36 shows the scattered fields in the target zone along a vertical cut

when the horizontal displacement is 3 t. This cut is 1 t away from the junction

contour. Therefore this cut shows the performance of the reflector close to the

edge of the target zone. Also, since these reflectors are symmetric about z = 0,
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the fields shown in Figure 36 are the same as the fields along a vertical cut at

z = -3 I. Again, the total scattered fields for both reflectors oscillate around the

GO level. The peak to peak variation in the oscillations is slightly lower for the

optimized reflector. The diffracted fields for this cut are shown in Figure 37. Note

that the diffracted fields for both reflectors are at least 30 dB below the GO fields.

Therefore, the performance of the reflectors has not degraded much toward the

edge of the target zone.

4.3 Scattered fields along horizontal cuts

Figure 38 shows the scattered fields in the target zone along a horizontal cut

when the vertical displacement (y) is 6.5 t. This cut is also 1! from the junction of

the reflector. Also, this cut is the most strongly influenced by the diffracted fields.

This is because the transition region of diffracted fields spreads out farther as the

distance from the source of diffraction increases [5]. The bottom junction is the

farthest junction from the target zone. Thus, this horizontal cut is most affected

by diffracted fields since it is in the transition region of the bottom junction. As

seen in Figure 38, the total scattered fields for the non-optimized reflector no

longer oscillate around the GO level. They have been displaced due to the strong

diffracted fields from the lower junction. Note that the total scattered fields for

the optimized reflector still oscillate around the GO level in a similar manner to

the vertical cuts. The reason the diffracted fields are so strong near the bottom

junction for the non-optimized reflector is that the blending parameters for the top

junction were used to generate the entire blended rolled edge. This can be seen in

Figure 39 where the diffracted fields for the two reflectors are plotted. From this

figure, the diffracted fields for the optimized reflector are significantly lower than

the diffracted fields for the non-optimized reflector.
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Figure 40 shows the scattered fields in the target zone for a horizontal cut with

a vertical displacement of 8.5 I. The total scattered fields for the non-optimized

reflector are still slightly displaced above the GO field level. The total scattered

fields for the optimized reflector oscillate around the GO level. Figure 41 shows

the diffracted fields for this cut. Note that the diffracted fields for both reflectors

are at least 35 dB below the GO field.

Figure 42 shows the scattered fields in the target zone for a horizontal cut

with a vertical displacement of 10.5 _. This cut is 1t from the top junction of the

paraboloid. For this cut the total scattered fields for both reflectors are almost

the same until the horizontal displacement is 2 I. After this point, the ripple in

the oscillations of the scattered fields for the optimized reflector are slightly lower

than those of the non-optimized reflector. The diffracted fields for both reflectors

are shown in Figure 43. Note that the diffracted fields for both reflectors are at

least 35 dB below the GO level.

4.4 Summary

The performance of a parabolic reflector with two different blended rolled edge

terminations was presented. The scattered fields from the reflector with a blended

rolled edge generated from a fixed set of blending parameters was compared to the

scattered fields from a reflector with a blended rolled edge generated from a varying

set of optimized blending parameters. Both reflectors showed good performance.

Thus, the design procedure presented in this work leads to good blended rolled

edges. The optimized reflector showed improved performance in terms of the peak

to peak field variation over the whole target zone. This was especially true near

the bottom of the target zone. A summary and general conclusion of this work are

presented next.

74



O

OO
¢q
I

C_

OO-
Cq
I

r_
-O

OO •
-O OO-

04

L_ '

c-
O kO

N "
oO--
04

C_
K_
O

F--
QO

OO
04
!

O

O%

04
!

GO Field

Optimized Surface

Non-Optimized Surface

I I I i

0.0 1.0 2.0 3.0 4.0

Width (feet)

Figure 38: Total scattered fields for a offset horizontal cut in the target zone
(y = 6.5').

75



O__

o

q
0--

I

q
O_

I

0

m7
q

(D

_ q

_ q
kS_-

I

o
o

!

q

I

o
d

' 0.0

GO Field

Optimized Surface

Non-Optimized Surface

.................... " .................... .'..................... °....................

_ b--.. .,_-"_ i ....._ _"_"
,,._.., : _ /" : "_._:" _ l-

f-
: l

....................•...._ .............._..._.1.....................................

\ I", :/ _ /
\k I "--_. \ I

......_/...........!.........

: _1 :

1.0 2.0 3.0 4.0

Width (feet)

Figure 39: Diffracted fields for a offset horizontal cut in the target zone (y = 6.5')•

76



A

r,f)
"o

iT.

c-
O

N

0
I----

0

e,,!
I

00--
O4
I

(X)--
O4
I

GO-

7

OO

GO_
O4
I

O

i 0.0

" '/_ _ ............>:"_ ......................!.............,]L;-L_,;Z-2L;]___._ _. , . , .:_____,.'

GO Field

Optimized Surface

Non-Optimized Surface

i i i i

1.0 2.0 3.0 4.0

Width (feet)

Figure 40: Total scattered fields for a offset horizontal cut in the target zone
(y = s.5').

77



0._

o

o.
o-
!

<D
o_

I

v o

_m

GO Field

Optimized Surface

N0n-Optimized Surface

:

:

.................... ' ..... %.... ................. :....................

o.

_D T
K.. I I

f

•"- _, -- _ .

..................... i ..................... : .........................................

I

<:D

I

_m

'0.0 t.0 2.0 ,5.0 42

Width (feet)

Figure 41: Diffracted fields for a offset horizontal cut in the target zone (y = 8.5').

78



0

cO
Cq
I

O4

cO .....................................................................................................

Cq
I

-[D cO .....................................................................................................
_) Cq

L_ '

E

N •
cO .......................... ,......................... ,..............................................

K_

0
_--

cO

cO-

l

0

I

GO Field

Optimized Surface

Non-Optimized Surface

1 I ! I

0.0 1.0 2.0 5.0 4.0

Width (feet)

Figure 42: Total scattered fields for a offset horizontal cut in the target zone
(y = 10.5').

79



o
°I

o

o.
O-

f

O

c__
c,,l
I

O

-_D

CD
ol

Ii

_D
-4---'

c.b
CD

GO Field

Optimized Surface

Non-Optimized Surface

: : :

.................... i ..................... J ..................... t .....................

u_
I

o
o_
I

o
o_
I

<m
O
0o
I

o

I

o
o
o-

.....................i.....................i...........................................

...... _ .... ' So:.._. i /"

:I.....\ /"

'" .7:(>..-.................:......." '. "...................... _.._...:....../ ............

\\i//I

'0.0 1.0 2.0 3.0 4.0

Width (feet)

Figure 43: Diffracted fields for a offset horizontal cut in the target zone

(y = 10.5').

8O



CHAPTER V

SUMMARY AND CONCLUSIONS

The objective of this research was to develop a procedure to design blended

roiled edges for compact range main reflectors. The reflector can have an arbitrarily

shaped rim and may be center-fed or offset-fed. A blended roiled edge is added to

the reflector to reduce the diffracted fields from the rim of the paraboloid. Thus,

the design procedure should lead to a rolled edge that minimizes the diffracted

fields and satisfies all design constraints. Such a design procedure was developed.

The design procedure leads to a reflector that has a smooth and continuous surface

and has a continuous radius of curvature at the junction between the paraboloid

and the blended rolled edge. The design procedure guarantees that the reflector

will fit in the specified area while minimizing the diffracted fields.

In the design procedure, for each point on the rim of the paraboloid, a rolled

edge plane is defined. This rolled edge plane is unique and guarantees a continuous

rolled edge. The elliptical section to be blended with the paraboloid at each specific

point on the junction contour lies in this rolled edge plane. However, this rolled

edge plane may not contain the focal point of the paraboloid. This is especially

true for offset reflectors. Thus, the design procedure developed by Gupta et al. [7]

can not be applied directly. To solve this problem, the concept of an equivalent

parabola was introduced. The equivalent parabola has its focus in the rolled edge

plane and traces the part of the main reflector paraboloid which lies in the rolled
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edgeplane. The equivalent parabola was used to design a blended rolled edge for

each point on the junction contour. It was shown that the parameters (focal length

and junction height) of the equivalent parabola varied along the junction contour.

Thus, it was necessary to optimize the blending parameters for each point on the

junction contour. However, the variation of the equivalent parabola parameters

were very gradual. Thus, the blending parameters need to be optimized only for

a limited number of junction contour points. Interpolation was used to find the

blending parameters for the intermediate junction contour points.

Since the variation in the blending parameters along the junction contour is so

gradual, it is anticipated that a computer code could be developed to optimize tile

blending parameters for all points on the junction contour starting with a single

set of optimized blending parameters. Such a computer code should be developed

in the future.

82



APPENDIX A

DEFINING THE JUNCTION CONTOURS

In this appendix, the defining equations for three different junction contours

are presented. The xy-projections of the three contours are shown in Figure 44 [5].

A.1 Concave junction contour

The concave edge contour [5] is formed by considering a rectangle in the

xy-plane. This rectangle, referred to as the "defining rectangle", has absolute

maximum x dimensions defined as Xmin, Xmax and absolute maximum y dimensions

defined as Ymin and ymax. These are the same dimensions as the _y-projection

of the main reflector including the blended rolled edges and should be equal to

the available space for the main reflector. The xy-projection of the target zone is

considered to have :v-dimensions of zleft, _rht and y-dimensions of Ybot and Ytop.

The center of the defining rectangle coincides with the center of the a_y-projection

of the target zone. Radial lines are drawn from the center of the defining rectangle

to its border. The concave edge is formed by the locii of the points on the radial

lines that are a fixed distance, re, from the border of the defining rectangle as

shown in Figure 45. The parameter re should he set equal to the height of the

rolled edge and will determine the amount of concavity of the junction contour.

The relations between the defining rectangle and the ry-projection of the target
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zoneare given by

zmaz = Xrht +re (A.1)

z,_i_ = _t_# - r_ (A.2)

yma® = Ytop+re , and (A.3)

Ymin -" Ybot -- re. (A.4)

The center of the zy-projection of the target zone, and thus the center of the

defining rectangle, is located at (Zavg,yavg), where

ynmz + Yrnin = Y_op+ Ybot (A.5)
Yavg = 2 2

xma_ + _,min Zrht + zteft (A.6)
za,_g -- 2 2

The coordinates of the concave junction can now be found using the defining

rectangle. Let (zaz,yaz) be a point on the perimeter of the defining rectangle as

shown in Figure 45. The corresponding point on the concave edge contour of the

paraboloid is Pj(zj,yj,zj), and is given by

ve( Yaz - YaVf ) and

yj = z,_.- JC=_.- '_._i'2+ {y*"- _°_)_'
(A.8)

=z.+ y_ (A9)
zj - 4fc

The entire concave edge contour of the paraboloid can be generated by tracing

(za=,yaz) around the perimeter of the defining rectangle.
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A.2 Circular junction contour

The constraint equation for the circular contour is given by

Yrnaz -- Ymin : Xma_ -- Wmin • (A.10)

The defining rectangle for a circular contour is formed from the maximum dimen-

sions of the reflector. These dimensions are: (zmaz, Xrain), and (Ymaz,Ymin). The

relationship between the defining rectangle and the target zone is given by

Zrht = Xrnaz -- re (A.11)

Zleft = Xmirt + re (A.12)

Ytop = Ymaz - re ,and (A.13)

Ybot = Ymin + re • (A.14)

Let (Xa::,yaz) be a point on the perimeter of the defining rectangle as shown

in Figure 46. The corresponding point on the circular junction contour of the

paraboloid is Pj(zj,yj,zj), and is given by

(V/ )zj = (Ytop - yavg) (zaz - Zavg) 2 + (ya= - yavg) 2 + :Car9 (A.15)

Yaz -- Yavg )Yj = (Ytop - yavg) _(Zaz - _:av-_g)2"_ (y---az- yavg) 2 + yavg , (A.16)

and z i is given by Equation (A.9). The entire circular junction contour can be

generated by tracing (Xaz,Yaz) around the perimeter of the defining rectangle.

A.3 Rectangular junction contour

The absolute maximum dimensions of a reflector with a rectangular junction

contour are defined as: (Xmaz, zmi=), and (Ymax, Ymi,_)" The relationship between
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the maximum dimensions and the target zone is given by

xrht = Zrnaz - re (A.17)

zle.ft = Zrnirt + re (A.18)

Ytop : yrnaz - re , and (A.19)

Ybot : Ymin -4-re • (A.20)

Let (zaz,Yaz) be a point on the perimeter of the rectangle formed by the

target zone as shown in Figure 4"/'. The corresponding point on the rectangular

junction contour of the paraboloid is Pj(zj,yj, zj), and is given by

• j = xaz (A.21)

Yj = Yaz , (A.22)

and zj is given by Equation (A.9). The entire rectangular junction contour can be

generated by tracing (Za_,Yaz) around the perimeter of the rectangle formed by

the target zone.
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